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Brittle fracture in a ductile material wi th  
application to hydrogen embr,ttlement 
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A physical model of fracture in materials is developed which features a brittle crack 
imbedded in a plastically deformed medium. This model is presented as an alternative to 
fully ductile failure by hole growth, and general criteria for the two alternatives are 
discussed. One of these criteria for the existence of an atomically sharp crack is that the 
dislocation content near the crack tip be limited by the inhomogeneous character of 
dislocation slip in the crystal. With the dislocation distribution characteristic of Mode III 
fracture, we derive expressions for the fracture toughness as a function of material 
parameters. We have extended the theory to the case of hydrogen embrittlement in steels 
and compare our theoretical predictions with experimental work by others. 

1. Introduction 
Fracture in materials can occur by either of two 
physically distinct mechanisms. In the first mode, 
new surface is formed, and the crack advances by 
wholly plastic processes, as manifested most 
commonly by hole growth [1]. In the second 
mode, fracture occurs by the continuous opening 
of an atomically sharp crack in cleavage [2]. This 
mode is variously called brittle fracture or lattice 
decohesion, but we shall often refer to it also as 
classic fracture. Although hole growth fracture is a 
common form of failure in practical materials, 
brittle fracture hardly ever occurs in the pure form 
of simple cleavage, and consequently is usually 
thought to be of little more than academic 

interest, at least in metals. Indeed, the prevailing 
opinion is that fracture in metals is a ductile hole 
growth phenomenon with crack initiation occur- 
ring at the point of maximum triaxial stress ahead 
of a well rounded main crack. However, it is the 
purpose of this paper to show that brittle fracture 
is still a valid and useful concept in ductile 
materials, and that a modified form of classic 
fracture can describe the process of hydrogen 
embrittlement in high-strength steels, as well as 
other fracture phenomena in materials with finite 
ductility. 

We will show that in ductile materials the 
plastic zone acts to shield a brittle crack, embed- 
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ded within the plastic zone, from the full force of 
the external stress field. Thus the apparent macro- 
scopic stress intensity factor is characteristic of a 
tough material. However, the material toughness is 
at the same time controlled by the properties of 
the cohesive zone of a brittle crack core. The 
brittle crack at the core is also consistent with the 
presence of a well developed plastic zone, provided 
two essential conditions are met; (1) the brittle 
crack is stable against spontaneously generated 
blunting and dislocation formation at the crack 
tip, and (2) the total shear strain at the crack tip is 
less than one, so that the dislocation density in the 
vicinity of the crack tip is significantly smaller 
than one dislocation per atomic area. We discuss 
these two conditions briefly in turn. 

The first condition was the subject of an earlier 
paper by Rice and Thomson [3], of which this 
paper is a natural follow-on. In that paper, we 
showed that the necessary and sufficient condition 
for an atomically sharp crack to be stable in a 
crystal against spontaneous blunting was that the 
activation energy for the formation of dislocation 
loops out of the tip of the crack be greater than 
zero. It was shown in that paper that in the fc c 
metals, dislocation formation is spontaneous, but 
that in most other classes of materials, the energy 
for dislocation formation is greater than zero and 
often very high. Iron is a borderline case, where 
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stability is not clear. In computer studies in iron, 
Kaninen and Gehlen [4] have confirmed that iron 
may be unstable to dislocation generation at the 
equilibrium stress. We discuss the effects of hydro- 
gen on fracture in steel later, and we believe that, 
in the presence of hydrogen, the surface energy 
in iron is sufficiently lowered that a sharp crack 
should have no difficulty in remaining stable 
against spontaneous blunting. 

The second condition is also important, since if 
larger numbers of dislocation can be formed in the 
vicinity of the crack tip by plastic processes, they 
will round out the atomically sharp configuration 
there. Indeed, in the mathematical solution for a 
crack in continuum plasticity, an initially sharp 
crack develops a substantial crack opening dis- 
placement many atom spacings wide due to the 
large strain developed at the tip. However, many 
real materials cannot develop such large amounts 
of strain homogeneously on an atomic leve L 
because the dislocation sources of strain ~re distri- 
buted very inhomogeneously within the lattice on 
a scale usually determined by the microstructure 
of the material. Thus, although on a macroscopic 
scale where the crystalline microstructure is aver- 
aged out, a crack should have an opening displace- 
ment qualitatively like the continuum treatment. 
The crack tip itself need not be blunted (see 
Fig. 1). At this point, we assume that the crack 
configuration is like that given in Fig. 1, and 
.return at the end of the paper to a discussion of 
the necessary criteria for this. Since strain (actu- 
ally, its gradient) is closely related to the disloca- 
tion content, if the strain near the tip is limited, so 
is the dislocation content. Thus our basic assump- 
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Figure 1 Schematic drawing of a sharp crack in the field 
of an inhomogeneous dislocation and slip line distribu- 
tion. The gross features of the crack are broadened by the 
plastic deformation, but  the tip of the crack remains 
atomically sharp. 

tion is equivalent to assuming that the dislocation 
content near the crack rip is limited by strain 
hardening, and that it cannot build up to the large 
values implicit in the continuum plastic solution. 
In dislocation terms, our assumption is related to 
the tendency of heavily deformed materials to 
undergo dynamic recovery with the formation of 
dislocation cells [5]. The interior of the cells are 
found to be relatively distortion free, while the 
cells are bounded by incipient sub-grain bound- 
aries containing large densities of dislocations. 

As a result of the interplay of these two condi- 
tions on the stability of a brittle crack, we view 
fracture as a competition between the two modes. 
A material will be subject to classic brittle type 
fracture (though modified by the considerations of 
this paper) if a brittle crack is stable against the 
two types of blunting outlined. Otherwise, the 
material will fail by a ductile hole growth mecha- 
nism. 

Our model yields a thermodynamic criterion 
for the onset of crack growth, even though we 
shall often couch our work in terms of forces at 
the crack tip instead of free energies. The kinetics 
of crack growth will involve much more compli- 
cated phenomena such as creep in the plastic zone 
as discussed by Hart [6], or chemical reactions at 
the crack tip [2], etc. Our criterion thus forms a 
lower limit for the onset of fracture, since onset 
cannot be observed until some finite limiting value 
of crack velocity has been achieved which is 
experimentally observable. 

Various authors, most notably in recent years 
Oriani and co-workers [7], have discussed hydro- 
gen embrittlement in terms of lattice decohesion, 
but without a treatment of the plastic zone. Since 
even so brittle a phenomenon as hydrogen 
embrittlement involves large amounts of plastic 
deformation, most authors have preferred to look 
for its cause in terms of ways in which the pre- 
sence of hydrogen can modify the hole initiation 
and crack process [8]. In our work, the plastic 
zone forms a crucial and self-consistent part of the 
discussion, but it is assumed to enclose a core 
crack which is atomically sharp. 

2. The plastic shielding factor 
The basic assumptions of our work are illustrated 
in Fig. 2, where we sketch the stress in a material 
as a function of distance from the crack tip. 
Region I is the region of elasticity, region II is the 
region of continuum plasticity, and region III is 
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Figure 2 Sketch of the stress in a medium containing a core brittle crack shielded by a plastic zone. The continuum 
solution cannot be projected into the core crack region because of the inhomogeneous distribution of dislocation 
sources at an atomic level. 

the region dominated by the elastic field of the 
core crack. 

2.1. The  plastic zone  
We are concerned in this paper with the Mode I or 
opening crack. Although considerable theoretical 
work has been expended on the Mode I opening 
mode plastic solutions, the analysis is difficult, and 
recourse must be made early in the analysis to 
numerical solutions. Here, we are interested 
primarily in the physical nature of the fracture 
problem, and prefer to work with a simplified 
model, because it allows us to develop a relatively 
analytic approach. We shall therefore use the anti- 
plane strain solution of Rice [9] for the Mode III 
crack, because it permits us to write analytic 
expressions, and trust that the predictions it makes 
can be applied uirectly to the Mode I crack. For 
this purpose, we assume a strain hardening 
material of form 

o = go(e/Co)", e > Co. (1) 

n is the work hardening index, typically in the 
range 0.1 to 0.3. o and Oo are the shear stress 
measured at some point in the plastic zone and 
critical shear stress, respectively, e and e0 are simi- 
lar quantities for the engineering shear strains and 
n is the strain hardening coefficient. (The engineer- 
ing strain is def'med by e = auz/ak where X is the 
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principal shear direction, and uz is the anti-plane 
displacement. 

We shall work from the solutions presented by 
Rice [9]. According to  Rice, the strain is a con- 
stant on a circle whose radius is R and whose 
centre is on the cleavage plane at a distance X in 
front of the crack tip, where 

K 2 ( e o ~  '+n 

1 - - n  
: = - -  .R(e) (2) x(e )  1 + n 

The solution is depicted in Fig. 3, which shows 
the direction of the principal strain, e. In Equation 
2, K is the apparent stress intensity factor as 
measured in the elastic region, and defined by the 
asymptotic behavior of the stress as a function of 
distance, p, from the apparent position of the 
crack, given by 

= a ( 3 )  

We shall write an approximation of Equation 2 
which will be necessary in order to arrive at 
expressions we can handle analytically, namely 
tha t  

x(e) = R (e) (4) 
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Figure 3 Strain in the plastic zone, from Rice, the solution for the strain in the plastic zone is a circle of radius R (e) and 
centred on the fracture plane a distance X(e) ahead of the crack tip. The angle of the principal stress is the angle 4, 
measured from the vertical as shown. 

In this case, the circles of  constant strain all touch 
the crack tip, as shown in Fig. 4. When the equa- 
tion of  these circles is expressed in cylindrical 
co-ordinates, then we can write the strain in the 
entire plastic zone as 

r 
- R ,  

2 cos 0 

[ /~ '  cos  0~ 1'1 § 
- -   o -a;or I , 

where r and 0 are cylindrical co-ordinates with the 
crack tip as origin, and the cleavage plane is the 
X-axis. 

Y 

2.2 .  T h e  d i s l o c a t i o n  f ie ld  
We need to convert the strain field, [4] ,  into a dis- 
locat ion density field. This dislocation field is 
often termed the "geometrical dislocation den- 
s i ty",  and the actual dislocation density may in 
fact be larger because of the presence of  random 
dislocations whose strain fields cancel at large dis- 
tances. The geometric dislocation density is 
determined from the average continuum plastic 
strain field by the theory of  dislocation continua, 
as outlined, for example, in the review article by 
DeWit [10].  The geometric component  of  the 
screw dislocation density, N, is related to the 
elastic portion of the strain field by 

Figure 4 Modified configuration for approximate plastic zone strain. 

X 
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N = b \ 3x ~-yy-] (6) 

b is the Burgers vector of the dislocations, e~ is 
the elastic part of the total strain, given by 

e~ = o31/2/aetc. (7) 

The dislocation density in the plastic zone is then 
given by 

{ 2 _\,/1 +, e___Ol K" cos 0[ cos 20 
N = b \ zro~ ] r x+"'l+" 

3_ neo {  T§ 1 + 
2b 1 + nkTro~] cos1/1 +n 0 r n/x*n (S) 

Near the crack tip, the first term is dominant, and 
we approximate the screw dislocation density near 
the tip as 

eo{g2 cosOt T M  cos20 (9) 
N = - g k  rr o--~o ] r l+2-~n/~+n 

2.3. The  core crack 
For the reasons explained in the Introduction, the 
dislocation field cannot be extended to atomic 
dimensions, and we arbitrarily assume a cut-off 
distance, Re, below which local order in the crys- 
tal is assumed to be maintained. In this region, the 
crack is rigorously atomically brittle in configura- 
tion. If the solution is to be self-consistent at the 
cut-off radius, Re, then the stress generated at R e 
by the core crack must be the same as the stress 
generated at R e by the continued external stress 
and dislocation field. IfKe is the stress intensity of 
the core crack, then 

/Co 
o(Re) - ~/(2rrRc) (10) 

and from Equations 1 and 2 

o(Re)oo ( K2 _ln/1+n - ( l l )  

Since we shall be dealing with a thermodynamic 
criterion for fracture, Ke is related to the true 
surface energy of the material, 7, by the Griffith 
relation 

~:~ = 2 ~ r  (12) 

Y is Young's modulus. In Equation 12, we have 
neglected v 2 (v is Poisson's ratio) in relation to 
unity, and have introduced a Mode I fracture, 
whereas the previous equations relate to Mode III. 

132 

This is an unavoidable inconsistency in our work 
since we wish to derive analytical results for "real" 
fractures (i.e. Mode I), but cannot solve for the 
dislocation field of a Mode I fracture without 
resorting to numerical methods. 

By combining Equations 10 and !1, we cab 
eliminate o(Re), and write a simple relation 
between K and R e 

/TYIO +n)/2n 1 
K 2 = 27ro~karo~ ] R(el_,)n, (13) 

Associated with the cut-off radius is a maximum 
density of dislocations, which is obtained from 
Equation 9. In these terms, Equation 13 becomes 

)k ---= 2 ( l - 3 n ) / ( ! + n ) f f n ( n - 1 ) / ( l + n ) ( l §  

rl = Nb 2 (14) 

7/ is a dimensionless parameter, giving the maxi- 
mum dislocation density in atomic units, a0 has 
been converted to e0 by means of ao = #co, where 
/s is the shear modulus. In deriving Equation 14, 
we have also averaged out the angular dependence 
explicit in Equation 9. 

Equations 13 and 14 are the central results of 
the paper, and are interchangeable, depending 
upon whether the important physical parameter is 
the cut-off radius or the maximum dislocation 
density. We shall work with the latter. 

The equation for K has the correct qualitative 
dependence on the physical parameters, Y, Co, 3' 
and 7. It varies directly with % consistent with the 
empirical result that when 3' is larger, K must 
increase. However, we note that the dependence 
on 3' also depends upon the strain hardening prop- 
erty of the material, and that K 2 is not propor- 
tional to the first power of ' / as  in the elastic case. 
Likewise, increasing the yield strength decreases 
the toughness, as is generally observed. Again, we 
f'md that the details of this dependence vary with 
the strain hardening coefficient. Although 7/is a 
special feature of our theory not studied experi- 
mentally, clearly as 7/ decreases, the material 
should approach its perfectly brittle condition, as 
Equation 14 predicts. 

Useful physical insight into K is obtained by 
noting its variation as the strain hardening coef- 
ficient, n approaches its limits. As n -+ 1, in Equa- 
tion 14, K takes on its brittle fracture form, 
Equation 12. In the perfect plasticity limit 



TABLE I Some values of K as predicted in Equation 14 (MPam ~J2) 

n/~ 1 10 -2 10 -3 10 -4 

0.05 1.65 • 1016 7.66 X 10 -9 5.22 X 10  -6 3560 
0.1 4.56 X 10 -4 1.44 X 10 -3 
0.15 6.42 X 10 -4 829 94.2 10.7 
0.16 67.0 
0.2 112 24.1 5.19 
0.21 64.8 
0.25 337 10.6 3.36 
0.3 15.1 6.17 2.52 
1.0 0.932 0.932 0.932 0.932 

(n = 0), the stress in region II of  Fig. 2 is a con- 
stant, independent of  the external stress, and 
K ~ ~ .  In this case, R takes on a value which is 
also independent of  the external stress, and the 
core crack is completely screened in an unphysical 
way. As n decreases from unity, however, K builds 
up to very large values compared to the brittle 
limit because of  the screening of  the core crack by 
the plastic region. A multiplication factor which is 
a measure of  the effective surface energy of  the 
material is given from Equation 14 by 

K 2 ~_ ( ~ i t  O-n)/3n 
Kc2 - / e3~ (15) 

A number of  aspects of  the current theory are 
more qualitative than we would like, such as the 
use of  Mode III screw dislocation field for the 
plastic zone. However, one fine point can be rather 
easily treated, namely, to show that the region 
inside the plastic zone within which no disloca- 
tions are allowed does indeed display the 
Kc/x/(27rr) stress dependence which is character- 
istic of  the core crack. This proof  is given in the 
Appendix. 

Table I lists some values for K as predicted by 
Equation 14 for various values of  77 and n for a 
representative steel. The ASI 4340 steel on which 
Oriani and Josephic performed their experiments 

has a K value in air of  about 6 2 M P a m  i n ,  
although at these high values of  K, fracture was at 
least partially by hole growth. 

3. Dislocation drag forces on the crack 
In deriving the equilibrium external stress on a 
crack, we have calculated the static force on a 
crack tip from its plastic zone, but have not con- 
sidered the energy required for the crack to regen- 
erate its plastic zone as it moves, leaving behind a 
wake of  plastic deformation. The energy to form 
this wake will constitute a drag force on the crack 
as it moves. We shall estimate this drag by calculat- 
ing the energy required if the crack leaves all of  its 
plastic deformation as a wake. On the basis of  
elementary geometry, the force due to the wake is 

dE fR' dx - 2Eo N(y)dy. (16) 
R 

Eo is the line energy of  a dislocation, E is the total 
stored energy in the wake. N(r) is the density of  
"geometric" dislocations in the plastic zone, x is 
the direction of  motion of  the crack, and y is the 
direction vertical to the crack plane, Fig. 5. R is 
the radius of  the depleted zone, below which the 
dislocation density is flattened, and R '  is the 
radius of  the plastic zone. The factor of  2 in Equa- 
tion 16 derives from the fact that the plastic zone 
extends above as well as below the crack surface. 

OUTER RADIUS O F }  
PLASTIC ZONE 

RADIUS OF INNER l 
CORE REGION J - 

m B  a '  

N max 

Y Figure 5 Configuration for calcu- 
lation of plastic zone drag. N rn~ is 
the value at a given value of y where 
N(r) reaches a maximum value. 
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We take the dislocation density from Equation 9, 
and slightly over estimate the results by setting 
cos 0 = 1. Then 

dE fn'_ d y  
dx - 2EoNo JR y(l+2n)l(l+n) 

eo ( K2~/( l  +n) 
No = -~- , ~ 1  (17) 

vro6/ 

Taking the upper limit to be infinity, which we 
can do without significant error, taking the value 
of R from Equation 2, and K from Equation 14, 
we have 

Y dE _ 2(l_4nZ+an3)12n(l_n2 ) 
K 2 dx  7/,(1 -2n)/3(1 +n) 

eo 7/a -2nj (18) 

In Equation 18 we have written the ratio of the 
dislocation drag forces to the crack extension 
force derived in Equation 14. We have grouped 
dimensionless quantities together for greater ease 
of interpretation. Again, we have some difficulty 
in choosing which elastic constant to use. Using # 
gives a lower limit, Y gives an upper limit, 

The quantity lab~'), is a number of order 10 to 
100 which we have displayed for a number of 
materials in Table II. Since even a very strong alloy 
will have eo < 10 -2, and since any reasonably 
ductile material ~11 have a value of 7? > 10-4, it is 
seen that Equation 18 will usually (but not 

T A B LE I I Values of  #brig for Selected Materials* 

Materials la b [3, Y b /7 

Pb 5.765 15.08 
Au 4.796 13.96 
A1 8.515 23.89 
Ni 10.798 29.40 

Na 3.752 6.380 
Fe 8.726 31.60 
W 25.79 66.06 

LiF 26.10 67.79 
NaCI 26.00 57.38 
MgO 28.68 72.48 
AI~ O3 18.45 47.97 

Be 34.21 88.95 
Zn 32.90 85.54 

*Because of  the uncertainty in the appropriate elastic 
constant  to be used in our work, we list two values, one 
for the shear modulus, and one for Young's Modulus. 
Values of  "l' are taken from Rice and Thomson [ 3 ]. 
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always) be a number less than 1, and the disloca- 
tion drag term is expected to be small in relation 
to the equilibrium crack extension force. The main 
uncertainty in this conclusion is the fact that the 
"geometrical" density considered in Equation 16 
is likely to be only a fraction of the total disloca- 
tion density which includes the random disloca- 
tion component. The conclusion still seems to be 
safe in many cases, however, even if the geomet- 
rical component is only 10% of the total. Equation 
18 does not include the kinetic effects of disloca- 
tion drag, consistent with our attempt to make a 
thermodynamic estimate of the critical K. Kinetic 
drag force terms have been estimated by Burns 
[12] in a single crystal hexagonal metal, where 
glide and cleavage planes are identical. They have 
also been studied for more general creep case by 
Hart [6]. For slow crack growth, these creep 
effects will be important. We return to a discussion 
of thermodynamic threshold versus kinetics in a 
later section. 

4. Effect of external atmosphere 
4.1. Surface energy effects 
In Equation 14, we related the stress on the core 
crack to the surface energy of the opening crack 
by the original argument of Griffith as modified 
by Barenblatt. In an external atmosphere (we shall 
assume a diatomic gas) the surface energy is low- 
ered in a way which was applied to cracks by 
Petch [13]. We shall extend his treatment in order 
to apply it more fully. The thermodynamic cri- 
terion for equilibrium of a core crack of unit 
length is given by 

fiF e = 6 F e l + 6 F  s + 6 F g  = 0 (19) 

F e is the total free energy of the region in the 
immediate region of the core crack, and not in- 
eluding the plastic zone. (We deal in this section 
only with the response of the core crack to the 
shielded stress of its immediate surroundings, and 
of the surface created by the opening of the sharp 
crack. Thus, free energy changes do not include 
the plastic zone.) 6 F  e is the change in the free 
energy when the crack is advanced by one atomic 
distance all along its length, We shall write 6 Fel = 
Gbo, where G is the crack extension force of the 
core crack, and bo is the lattice constant. 6F  s is 
the surface contribution to the free energy from 
the new surface, and 8 Fg is the free energy change 
in the external gas. By standard thermodynamic 
arguments [14], if the crack moves forward by 



one atomic spacing, the surface and gaseous free 
energies change by  the amounts 

6Fg = -- �89 

6 F  s = 23,bo + 2boP/as (20) 

It is assumed the crack is a line one meter  in 
length, and advances one atomic spacing all along 
its length. P is the number  of  gas atoms on the sur- 
face per m 2, assumed to be chemisorbed as an 
atomic species. /as is the chemical potential o f  
molecular gas, and/a  s is the chemical potential  of  
atoms on the surface. In equilibrium for a dia- 
tomic gas,/a s = �89 Thus at threshold, 

a = 23' (21) 

where 3' is the true thermodynamic surface tension 
of  the covered surface. 

When the gas is present, the Gibbs adsorption 
equation can be integrated to give 

3, = 3"0 - T  d e  (22) 

To find P(T), we shall adopt the Langmuir Equa- 
tion, although where an empirical isotherm is 
available, it could also be used. To obtain the 
Langmuir isotherm, we note that the partition sum 
of  the adsorbed gas on the surface when it is 
immobile on that  surface is 

Z s = ZeontZg (23) 

Zg is the parti t ion sum of  the single a tom on the 
surface relative to that a tom bound in a gaseous 
molecule, and Zeonf is the configurational part  of  
Z. We find that 

In Zeon~ = No In No --  (No -- P )  In ( N  o --  P)  

-- P I n  P + P E b / k T  + In ~'g 

Zg = e Eb/kT ~g (24) 

where No is the total number  of  surface sites. E b 
is the binding energy of a hydrogen a tom to the 
surface referred to its state in a free molecule. 
Aside from the Boltzmann factor, ~'g is the parti- 
tion sum of  a gas a tom at the surface site. I f  the 
a tom is tightly bound and in its lowest vibration 
state, fg = 1. An upper bound corresponds to the 
adsorbed a tom being only weakly bound in the 
two dimensions of  the surface, when fg = 
2rra 2 m k T / h  2 . Since the free energy of  the surface 
per unit-of surface, fs, is given by 

f s  = - - k T l n Z  s (25) 

and the chemical potential of  gas atoms on the 
surface is 

0L 
(26) /as - 0 p  

and/% = 2/as, we finally have 

- - 2 E  u +/ag = k T l n  - - k T l n  ~ 

(27) 
0 = rb2o 

We also know /as for a perfect gas of  diatomic 
molecules. It is given by 

( [2  mkV? '2 / 

where m is the mass of  the molecule, h is Planck's 
constant, frot is the partition sum for the rotator. 
The Langmuir isotherm then becomes 

0 z 
= aP 

(1 - o )  2 

(29) 
a = 17/ / kr  

and the surface tension becomes 

3' -- 3'0 -- b~ 111 1 + ~/(aP (30) 

This equation in its general form has been given by 
others, but our purpose in laying it out in detail is 
to note the isotope effect which shows up in the 
term for the diatomic rotator partition sum, ~'rot. 
We shall apply it in the following section to the 
experiments which have been carried out by Oriani 
and Josephic on hydrogen and deuterium. 

Substitu~tion of  Equation 29 into Equation 14 
gives the dependence on 3' to be }(l +2n)16n 

K = A 3'0 --3'x In (aP)  

3"a = k T / 2 b g  (31) 

A is a constant which can be evaluated from Equa- 
tion 14, and it is assumed that aP >> 1. Another 
interesting quantity is 

dK 1 + 2n 
_ / r  3,~ (3  2 )  

don P)  6n 3'0 

d K / d ( l n P )  is of  interest because it is the slope of  
the function, K, against pressure when plotted on 
log paper. In Equation 32 on the right hand side, 
we have given only the first term in a binomial 
expansion, valid when 3,o >> 3,1 In (aP). 
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Oriani and Josephic [7] have given some infor- 
mation on this point for the brittle fracture under 
discussion by performing transient experiments in 
which no time delay effects have been detected. In 
this paper, we shall therefore assume that the frac- 
ture is brittle, and that the hydrogen is able to 
attack the opening crack at its tip directly from 
the gas "phase. However, clearly this is a crucial 
point in our model, and additional experiments 
should be performed to settle the issue. (We note 
in passing that in recent work, Rice [16] has com- 
bined these two approaches by considering the 
brittle decohesion of grain boundaries buried in 
the matrix in a model of brittle fracture which 
does require bulk hydrogen transport to nuclea- 
tion site ahead of the main crack.) 

4.2. Hydrogen  e m b r i t t l e m e n t  
We will take hydrogen embrittlement in high- 
strength steel as a possible application of our 
theory. Part of the reason is that not 0nly is this a 
brittle form of fracture in a material with con- 
siderable remaining ductility, but it also involves 
the chemistry of atmosphere assisted fracture, all 
of which are included in our work. We emphasize 
again that we work only with the threshold for 
fracture, since we have not addressed slow crack 
growth. 

Hydrogen embrittlement covers a variety of 
phenomena. In the higher strength materials, or 
where the internal hydrogen concentration is not 
too high, the fracture is primarily by means of a 
brittle form of intergranular fracture with the frac- 
ture following the prior austenite boundaries of 
the steel. (See for example, the comments of 
Oriani and Josephic.) In other cases, the fracture 
clearly involves hole growth. Our discussion is 
aimed only at the former case. In this section, we 
shall deal successively with the main features of 
this brittle form of hydrogen embrittlement. 

4.3. Intergranular  f rac ture  
Fractographs show very clear and sharp grain 
boundary facets on prior austenite boundaries con- 
sistent with our model of an underlying brittle 
fracture [7]. Apparently the prior austenite 
boundaries are weakened by the presence of large 
precipitates on the boundaries. The fact that the 
fracture is brittle is attested by the sharp facets 
typical of the fractographs. Perhaps these bound- 
aries still retain some misfit or segregated chemical 
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Figure 6 Yield stress data of Gerberich and Chen and 
others plotted to determine value of n in Equation 14. 

species even in the fully transformed state which 
lowers their 3' relative to other paths in the crystal. 

4.4. Yield stress d ep en d en ce  
Increasing the yield stress increases the hydrogen 
susceptibility. This effect appears explicitly in 
Equation 14. Its precise power dependence in- 
volves the strain-hardening coefficient, n. The data 
available are sketchy. For our purpose, we com- 
bine in Fig. 6, the data of Oriani and Josephic [7] 
and Gerberich et  aL [15] on external hydrogen 
effects with the studies by Gerberich and co- 
workers for internal cathodically charged hydro- 
gen [15, 17]. From Fig. 6, we find the value 
n = 0.16 for the strain-hardening coefficient. 

4.5. Grain boundary dependence 
Gerberich et aL [15] have also studied the effect 
of grain size on the hydrogen threshold, but we 
believe this effect is primarily due to the concomi- 
tant variation of the yield stress, and is apparently 
consistent with their findings. Unfortunately, the 
grain-size dependence is badly confused by the 
whole question of what the traps for hydrogen in 
iron are, and how they might change with plastic 
flow. In addition, Gerberich et  al. [15] agree that 
the grain-size dependence may have to do with the 
distribution of other impurities at the grain bound- 
ary, and the additional weakening effect which 
that might bring. Yet another complicating effect 
is that the fracture occurs on prior austenite 
boundaries, so that the two types of grain bound- 
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aries must be separated. We believe that hydrogen 
embrittlement studies carried out under conditions 
where the grain boundary energies are systemmati- 
cally varied independently, would be an interesting 
experiment, as suggested by Gerberich et  al. 

4.6. Acoust ic  emission 
Gerberich et  al. [15] report acoustic emission 
from hydrogen embrittlement, and in our view, 
this is due to the inherently uneven rate of crack- 
ing when the fracture plane must follow the grain 
boundaries. 

4 .7 .  Internal versus external  hydrogen  
Gerberich et  aL [15] reports that there is a rough 
equivalence between hydrogen embrittlement 
induced by cathodically induced hydrogen in 
which the hydrogen is distributed in the interior of 
the material, and embrittlement caused by exter- 
nal hydrogen atmospheres. In our view, this result 
is not unexpected, because the grain boundaries of 
the prior austenite which form the fracture surface 
of the cathodicaUy charged material should pro- 
vide ample hydrogen to modify the final fracture 
surface energy. In the case of cathodically charged 
hydrogen, however, the general problem of the 
role of the prior austenite boundaries as traps for 

hydrogen in iron makes a quantitative thermo- 
dynamic treatment of the grain boundary energy 
as a function of dissolved hydrogen more difficult. 
Johnson [18] has emphasized the problem of 
trap distributions in modifying the effective super- 
saturation of H in the matrix. 

4.8. Hydrogen pressure dependence 
The most important data from our point of view 
are those reported by Oriani and Josephic [7], and 
Gerberich et  al. [15] on the variation of the 
threshold of fracture with the pressure of external 
hydrogen and deuterium. Both these sets of 
authors, however, were guided by theoretical 
models quite different from our own. In Fig. 7, we 
have plotted their data again. Also, we have dis- 
played some new data in new work to be pub- 
lished by Oriani and Josephic on the same 
material, but taken over a wider range of hydrogen 
pressure and which avoids certain systematic 
experimental errors in their earlier work connected 
with the threshold K measurement. This most 
recent and more accurate data plots as a reason- 
ably straight line in the graph Fig. 7 over its entire 
length. We note that both from Equation 32 and 
from physical reasoning, for small pressure, P, the 
curve of K versus log P must become asymptotic 
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TABLE III Calculations of dK/d (log P) in Equation 32 for various values of n and ~ (MPax/'rn)* 

n/n 10 -2 10 -3 10 -4 

0.05 
0.1 
0.14 
0.15 
0.16 
0.18 
0.2 
0.218 
0.25 
0.3 
1.0 

4.69 • 108 3.20 • 10 s 218 
1.52 • 103 48.2 1.52 

3.54 
20.0 2.27 0.258 

1.54 
4.58 
2.18 0.468 0.101 
2.27 
0.562 0.177 0.056 
0.225 0.0092 0.037 
7.78 • 10 -3 7.78 • 10 -3 7.78 • 10 -3 

*Material parameters are those characteristic of 4340 steel; 
/~=8.6X101~ N m -2,3 '=1.975Nm -2,e 0 =10  -2 , Y = 2 . 2 •  !011 Nm -2,b =2.1477A, T=294K,  b0 =2.48A. 

to its limiting value in vacuum. 'Thus the slope 
must decrease for large negative values of  log P, as 
shown qualitatively by the curve of  Gerberich. 

In Table I, we have already displayed predicted 
values of  K for a material with parameters corres- 
ponding to the steel used by Oriani and Josephic 
and by Gerberich. Oriani and Josepkic report a 
value for K in air in their 4340 steel of  about 
6 2 M P a m  1/2. If  we choose 7 = 10 -3, which we 
believe is the most reasonable value, this corres- 
ponds to a value of  n of about n = 0 . 1 6  
(77 = 10 -3) from Table I. We can also estimate the 
value of  n from the slope of  the curves in Fig. 7 
from Equation 32. This slope is displayed in 
Table III for the same material parameters as 
before. From the Table, the best value of  n is 
approximately n = 0.14 01 = 10-3). Thus, from 
the various lines of  argument, a value of  n in the 
vicinity of  n ~ 0.15 is a roughly consistent value 
for this material in our theory with the parameters 
chosen. For 77 = 10 -2, a somewhat larger value 
near n = 0.2 "is consistent. We are struck by the 
remarkably consistent predictions for n made from 
Tables I, III, and from the yield stress dependence 
of  Fig. 6. 

4 .9 .  I s o t o p e  e f f e c t  
Oriani and Josephic [7] report that measurable 
differences can be detected between hydrogen and 
deuterium. We note in Equation 29 that a depends 
explicitly on the isotopic mass of  the molecular 
species and in addition, both ~'g and ~'Rot depend 
upon the mass implicitly. For T =  298 ~ C, we 
have 

3.04 H2 
(33) 

~'Rot = 4.68 D 2 
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There is considerable uncertainty about what value 
to choose for fg in Equation 24, but it probably is 
c loser  to the tightly bound limit than to the 
loosely bound one. When ~'g = 1, then the curve of  
KD2 versusP should be shifted by a factor of  
approximately 4 relative to that of  H2 on the P 
axis. If  we assume that fg/M 3/2 ~ 1, then fRot is 
the dominant term, and the shift is about 1.5. We 
note that the curve of  Oriani and Josephic in 
Fig. 8 is actually shifted by a factor of  about 3 in 
the predicted direction, which is within the 
expected range. Oriani in a private communication 
has pointed out that a similar shift in the solid 
solubility of  H2 relative to D2 is predicted by our 
general treatment, and that none is observed by 
Heumann and Pfimas [19].  We are surprised that 
the mass effects exactly cancel out in the partition 
sums for gas and solid, and offer two comments: 
First, perhaps the experimental result should be 
rechecked; and second, the state of  the adsorbed 
atom on the surface is by no means identical to 
that of  the same atom in the bulk. Thus, cancella- 
tion effects in the bulk need not  apply quantita- 
tively on the surface also. 

5. Slow crack growth and the thermo- 
dynamic threshold 

Our theory is a thermodynamic theory of  the 
onset or threshold for crack growth. It establishes 
the necessary energy balance for possible fracture 
growth, and does not address kinetics. This is clear 
enough from Section 4, where the surface energy 
balance is treated in an explicit thermodynamic 
manner, but not so for the treatments of  the 
plastic zone in Sections 2 and 3. Nevertheless, 
these treatments, since they are fundamentally 
continuum-based are of  necessity in the same class. 



For example, we set the criterion for crack 
advance to be that the forces opening the atoms in 
the cohesive region meet the Barenblatt condition, 
that is, the forces on the atoms at the tip are suf- 
ficient to hold the crack open against the cohesive 
forces acting there between the atoms. The energy 
condition in the plastic zone itself, discussed in 
Section 3, is also a thermodynamic argument 
because we deal merely with the overall energy 
conservation of the system. 

When the basic thermodynamic energy balances 
are satisfied, there still remains the question of 
how fast the process occurs. For example, if in the 
basic molecular processes by which the crack 
advances, there are activation barriers to be over- 
come (even though the thermodynamic forces are 
positive), the rate of  crack advance will be 
governed by rate processes. If  no activation bar- 
riers exist, then fast crack growth ensues. 

There are two main ways in which kinetics will 
be manifested; (1) rate processes at the crack tip 
itself may limit crack growth, (2) rate processes in 
the plastic zone by which the plastic zone accom- 
modates itself to the core crack can limit the crack 
growth. A priori, there is no way o f  telling which 
of these is the most important from our thermo- 
dynamic arguments. However, intuitively, in a case 
like the intergranular hydrogen embrittlement fai- 
lure, where the driving forces a t  the crack tip 
dominate the dislocation wake drag force, we 
would expect crack tip molecular activation 
processes to dominate dislocation creep forces. 
One form of such molecular processes at the tip is 
the lattice trapping effect discussed in an earlier 
paper [20]. The additional complexities involving, 
say, hydrogen gas effects at the crack tip will be 
physically analogous to, and mathematically simi- 
lar to, the lattice trapping and have been discussed 
in a qualitative generic way by Lawn [2]. 

6. Brittle and ductile fracture 
In this paper we have reconsidered some old ques- 
tions regarding the fundamental basis of brittle 
versus ductile fracture in materials by developing a 
model of modified brittle fracture which is consis- 
tent with the known properties of ductile 
materials. Since hole growth is a demonstrated 
form of fracture in these same materials, the fun- 
damental question then pertains to the criteria 
governing the appearance of one form of fracture 
instead of the other, or even more importantly the 

transition from one form of fracture to the other. 
We believe this criterion concerns the ability of 

the material to create an arbitrary dislocation den- 
sity up to densities of the order of unity in atomic 
units, and homogeneous down to atomic dimen- 
sions. We have shown that if the crystal is limited 
in its ability to create such densities at stresses 
characteristic of the tip stress of a crack, then the 
fracture process is essentially a brittle phenom- 
enon, even though the macroscopic toughness of 
the crack imbedded within its plastic zone may be 
quite high. 

We have already commented in the Introduc- 
tion on the conditions for self-consistency of our 
model, namely that (1) the crack must be stable 
against spontaneous dislocation formation, and 
(2) that sources in the crystal must not be distri- 
buted homogeneously on an atomic scale. But 
condition (2) is always satisfied for any crystal- 
line solid with a nominal degree of order. Disloca- 
tion sources must by definition be regions of high 
stress concentration, such as ledge sites on grain 
boundaries, incoherent precipitate boundaries, 
etc., which are not distributed so densely and 
uniformly over a random prospective fracture 
surface in ~he material as to be able to furnish the 
required homogeneous dislocation densities. We 
therefore believe that condition (1) is the primary 
criterion. 

The argument of the last paragraph refers to the 
self-consistency of the classical fracture model, but 
this same argument also applies to the hole growth 
model. Suppose a hole is nucleated on an atomic 
scale in front of a main crack, as postulated in the 
hole growth model. As in the case of  classical frac- 
ture, the material around the hole must deform 
with strains large compared to unity in order for 
the hole to grow. So long as the radius of curva- 
ture of the hole is small compared to the distance 
between dislocation sources at the available stress, 
the hole must supply its own dislocations by spon- 
taneous formation at its surface in much the same 
way as we have argued for the crack. Unfortu- 
nately, although this qualitative argument is easy 
to state, the corresponding quantitative statement 
is very difficult for the hole case, because of the 
complex stress state, and the uncertainties regard- 
ing the ultimate nature of the original hole nuclei. 
Hence, although we have given in this paper a self- 
consistent model for the brittle fracture case, until 
we can do the same for hole growth, such matters 
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as the ductile to brittle transition cannot be put on 
a firm theoretical foundation, and this remains a 
task for the future. 

There is within our model one parameter which 
particularly invites further study, namely the cut- 
off dislocation density and the inner core radius, 
Re, of Equation 2. Unfortunately, we have found 
no experimental data which have helped throw 
much light on this parameter, and we suggest 
experimental studies regarding dislocation densi- 
ties and structures near crack tips would probably 
be the most useful studies in sorting out the funda- 
mental questions we have attempted to pose. 

7 .  A p p e n d i x  

Equation 14 was derived by assuming that below 
the dislocation cut-off radius Re, the stress is given 
by the solution of a crack in an infmite medium. 
Here, we shall show that if we take the continuum 
stress solution given by Rice and subtract from it 
all the dislocations within the cut-off radius, Re, 
that the stress within the depleted zone is that of 
the core crack near the crack tip. From this result, 
we shall rederive Equation 14. 

Quantitatively, 

~(x) = aop(x) -~dop(x)  (A1) 

o is the total stress along the x-axis (see Fig. 8), 
Oep is the Rice elastic-plastic solution, and 
adep is the stress along the x-axis of the subtracted 
(or depleted) dislocations within R. (We perform 
our calculations for simplicity along the x-axis in 
front of the crack, and do not include the angular 
dependence.) 

We calculate the term, adep as the sum of two 
terms. The first, a D, is the direct contribution of 
the dislocations, and the second is an image term, 
O S . 

Ode p (X) = 0 "D q- O S (A2) 

a D is the direct term of the dislocations stress cor- 
responding to a dislocation in an infinite medium. 
At the tip of the crack, this stress is given by 

o I  (x') = ~ "  cos 0 dx (A3) 

N(r,  O) is the deleted dislocation density, given by 

d=' fx' += 
M = ~/ J , ,2 N ( r )  dr 

~rr]2rr x/(x ) J ( r  ) 

= /dO 4 ( X  ) Jdeple ted r ' 2  rack 
z o n e  
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N '  = N(r ,  O) -- N m (A4) 

N (r, 0) is the continuum density given by Equa- 
tion 8 and Arm is the cut-off maximum density 
allowed by the material. 

The term in a s is essential because the deleted 
dislocations are not in an infinite medium, but one 
with a cut in it. Hence o D is modified by image 
terms due to the cut. This image term is given by 

- 2~x + al 
a s  (x) = rr(x 2 _2ax) i /2  

fo _a a~3 (x ' )x/[--(2ax '  +x '2 ) ]  
x 2 + x  '2 + 2 a ( x - - x ' )  d x ' , x > O  

(A5) 
This expression is obtained in the following stan- 
dard way. Suppose there is a stress a~  (x') exerted 
over the negative x'-axis in an infinite medium. 
Then we make a cut along the negative x'-axis of 
length 2a, beginning at the origin. To satisfy the 
boundary condition of elasticity, these stresses 
must be cancelled on the surface by adding a stress 
- - a ~  (x') along the cut surface. Then the stress 
along the positive x-axis, (ahead of the cut) due to 
to this stress is given by Equation A2. Equation 
A5 appears in the elastic theory of fracture, and 
is discussed in a number of places, e.g. [11]. Our 
notation differs from these authors, however, 
because we have placed the origin at the crack tip 
instead of in the centre of the cut surface. The 
stress a ~ ( x ' )  is the stress at x"  which is generated 
by the dislocations deleted from the depleted 
zone. Following the argument as outlined by 
Goodier (see [11], Equations 45 to 55), we have 

M 
a D ( x )  - X/(2rrx) o D ( 0 ) + . . .  

(A6) 

M = -- x/[x't 

In writing A6, we assume that the size of the 
depleted zone is small compared to the crack 
length, so that the integral forM extends only over 
a small portion of the total crack. 

The calculation of M is straightforward, but 
must be approximated in order to obtain analytic 
expressions (see Fig. 8). 

K cos Ol nil +n cos 2 0 
- -  e o \ - - ~ e ~  / rO+2n,/O+n ) dr (A7) 



In this form, M cannot be integrated except by numerical methods, so we break up the integrations in 
the following manner 

J ( 2 )  /g2 ~n/1 +'f dx t [fO x' +1 rCos2Ocosn/1.n 0 
M ~--- ~176 ~o~) ~(~-) dr f ad(C~ x r (1 + 2rt)'(1 +") 

+ dr  ld(cos0) cos0 cos 20 cos n/l +nO (A8) 
i -- y 

The 0 part contributes a numerical factor of  the order of  unity which we shall set equal to unity. Thus, 

tJo Jo r""+" +f , -"  +" '  

L, x' f d,-} + 

Finally, we find an approximate expression for M, 

{K2\n/a +n 
M = 2~/.~ '  a o ~ a ~ )  R(e 1/2-"/a+"), where ~' = 527rx/2n(1 + 12n +_n)13n2 

With these results, we are in position to derive 
Equation 14 in perhaps a more satisfactory way 
than in the main text. The stress ahead of  the 
crack now becomes 

M 
a(x) - x/(21rx~ + aD (0) -- a D (x) + aep(x) 

(A11) 

At x = R  e, the stress is composed of  the 1/x/x 
term, as well as the other terms, making the 
matching procedure used in the text uncertain and 

(A10) 

qualitative. However, at the crack tip, the domi- 
nant terms clearly are the three first terms since 
the singularity at r --> 0 in aep is weaker than 1/X/x. 

We thus write to a good approximation, 

o(0)  = M K~ 
X/(27rb) - X/(21rb) (A12) 

Since the  stress at the crack tip is given by the 
cohesive forces of  the atoms there, by Equation 12 
we can also write 

- - M  = 27Y (A13) 

Y 

.Ao,os OFzoNE 

X / 
L �9 �9 X 

x L ! 
I- 2a 

Figure 8 Co-ordinate configuration for stress at crack tip. x' is a point on the crack surface, x is a point ahead of the 
crack tip at which the overall stress is needed. (r, 0) is the position of a deleted dislocation in the core region. 
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After substituting Equations 9 and A10 into 
Equation A13, we again fred Equation 14, but 
with the substitution of the numerical factor k' for 
k. Because of the simple physical ideas behind 
Equation 14, and because of the inherent approxi- 
mations in all we have done, we prefer the simpler 
argument of the main text to the one outlined in 
this Appendix. 
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